人教A版高中数学选修23课件:回归分析的基本思想及其初步应用.pptx

上传人(卖家):晟晟文业 文档编号:4324089 上传时间:2022-11-29 格式:PPTX 页数:32 大小:275.97KB
下载 相关 举报
人教A版高中数学选修23课件:回归分析的基本思想及其初步应用.pptx_第1页
第1页 / 共32页
人教A版高中数学选修23课件:回归分析的基本思想及其初步应用.pptx_第2页
第2页 / 共32页
人教A版高中数学选修23课件:回归分析的基本思想及其初步应用.pptx_第3页
第3页 / 共32页
人教A版高中数学选修23课件:回归分析的基本思想及其初步应用.pptx_第4页
第4页 / 共32页
人教A版高中数学选修23课件:回归分析的基本思想及其初步应用.pptx_第5页
第5页 / 共32页
点击查看更多>>
资源描述

1、人教A版高中数学选修2-3课件:回归分析的基本思想及其初步应用第一章统计案例第一章统计案例1.1回归分析的基本思想及其初步应用回归分析的基本思想及其初步应用(第二课时)(第二课时)浙江兰溪市兰荫中学浙江兰溪市兰荫中学陈国健陈国健a.比数学3中“回归”增加的内容数学统计1.画散点图画散点图2.了解最小二乘法了解最小二乘法的思想的思想3.求回归直线方程求回归直线方程ybxa4.用回归直线方程用回归直线方程解决应用问题解决应用问题选修-统计案例5.引入线性回归模型引入线性回归模型ybxae6.了解模型中随机误差项了解模型中随机误差项e产产生的原因生的原因7.了解相关指数了解相关指数R2和模型拟合和模

2、型拟合的效果之间的关系的效果之间的关系8.了解残差图的作用了解残差图的作用9.利用线性回归模型解决一类利用线性回归模型解决一类非线性回归问题非线性回归问题10.正确理解分析方法与结果正确理解分析方法与结果什么是回归分析:什么是回归分析:“回归回归”一词是由英国生物学家一词是由英国生物学家F.Galton在研究人体身高的遗传问题时首先提出的。在研究人体身高的遗传问题时首先提出的。根据遗传学的观点,子辈的身高受父辈影响,以根据遗传学的观点,子辈的身高受父辈影响,以X记父辈身高,记父辈身高,Y记子辈身高。记子辈身高。虽然子辈身高一般受父辈影响,但同样身高的父亲,其子身高并不一致,因此,虽然子辈身高一

3、般受父辈影响,但同样身高的父亲,其子身高并不一致,因此,X和和Y之间存在一种相关关系。之间存在一种相关关系。一般而言,父辈身高者,其子辈身高也高,依此推论,祖祖辈辈遗传下来,身一般而言,父辈身高者,其子辈身高也高,依此推论,祖祖辈辈遗传下来,身高必然向两极分化,而事实上并非如此,显然有一种力量将身高拉向中心,即子辈高必然向两极分化,而事实上并非如此,显然有一种力量将身高拉向中心,即子辈的身高有向中心回归的特点。的身高有向中心回归的特点。“回归回归”一词即源于此。一词即源于此。虽然这种向中心回归的现象只是特定领域里的结论,并不具有普遍性,但从它虽然这种向中心回归的现象只是特定领域里的结论,并不具

4、有普遍性,但从它所描述的关于所描述的关于X为自变量,为自变量,Y为不确定的因变量这种变量间的关系看,和我们现在的为不确定的因变量这种变量间的关系看,和我们现在的回归含义是相同的。回归含义是相同的。不过,现代回归分析虽然沿用了不过,现代回归分析虽然沿用了“回归回归”一词,但内容已有很大变化,它是一种应用一词,但内容已有很大变化,它是一种应用于许多领域的广泛的分析研究方法,在经济理论研究和实证研究中也发挥着重要作用。于许多领域的广泛的分析研究方法,在经济理论研究和实证研究中也发挥着重要作用。回归分析的内容与步骤:回归分析的内容与步骤:统计检验通过后,最后是统计检验通过后,最后是利用回归模型,根据自

5、变量去估计、预测因变量利用回归模型,根据自变量去估计、预测因变量。回归分析通过一个变量或一些变量的变化解释另一变量的变化。回归分析通过一个变量或一些变量的变化解释另一变量的变化。其主要内容和步骤是,其主要内容和步骤是,首先根据理论和对问题的分析判断,首先根据理论和对问题的分析判断,将变量分为自变量和因变量将变量分为自变量和因变量;其次,设法其次,设法找出合适的数学方程式(即回归模型)找出合适的数学方程式(即回归模型)描述变量间的关系;描述变量间的关系;由于涉及到的变量具有不确定性,接着还要由于涉及到的变量具有不确定性,接着还要对回归模型进行统计检验对回归模型进行统计检验;例例1从某大学中随机选

6、取从某大学中随机选取8名女大学生,其身高和体重数据如表名女大学生,其身高和体重数据如表1-1所示。所示。编号12345678身高/cm165165 157 170 175 165 155 170体重/kg4857505464614359求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重。的女大学生的体重。案例案例1:女大学生的身高与体重:女大学生的身高与体重解:解:1、选取身高为自变量、选取身高为自变量x,体重为因变量,体重为因变量y,作散点图:,作散点图:2、由散点图知道身高和体重有比较好

7、的、由散点图知道身高和体重有比较好的线性相关关系,因此可以用线性回归方程线性相关关系,因此可以用线性回归方程刻画它们之间的关系。刻画它们之间的关系。3、从散点图还看到,样本点散布在某一条、从散点图还看到,样本点散布在某一条直线的附近,而不是在一条直线上,所以直线的附近,而不是在一条直线上,所以不能用一次函数不能用一次函数y=bx+a描述它们关系。描述它们关系。我们可以用下面的我们可以用下面的线性回归模型线性回归模型来表示:来表示:y=bx+a+e,其中,其中a和和b为模型的未知参数,为模型的未知参数,e称为随机误差称为随机误差。思考思考P3产生随机误差项产生随机误差项e的原因是什么?的原因是什

8、么?思考思考P3产生随机误差项产生随机误差项e的原因是什么?的原因是什么?随机误差随机误差e e的来源的来源(可以推广到一般):可以推广到一般):1、其它因素的影响:影响身高y的因素不只是体重x,可能还包括遗传基因、饮食习惯、生长环境等因素;2、用线性回归模型近似真实模型所引起的误差;3、身高y的观测误差。函数模型与回归模型之间的差别函数模型与回归模型之间的差别函数模型:abxy回归模型:eabxy可以提供选择模型的准则函数模型与回归模型之间的差别函数模型与回归模型之间的差别函数模型:abxy回归模型:eabxy线性回归模型线性回归模型y=bx+a+e增加了随机误差项增加了随机误差项e,因变量

9、,因变量y的值由自变量的值由自变量x和和随机误差项随机误差项e共同确定,即共同确定,即自变量自变量x只能解析部分只能解析部分y的变化的变化。在统计中,我们也把自变量在统计中,我们也把自变量x称为解析变量,因变量称为解析变量,因变量y称为预报变量。称为预报变量。例例1从某大学中随机选取从某大学中随机选取8名女大学生,其身高和体重数据如表名女大学生,其身高和体重数据如表1-1所示。所示。编号12345678身高/cm165165 157 170 175 165 155 170体重/kg4857505464614359求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为求根据一名女大学生

10、的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重。的女大学生的体重。案例案例1:女大学生的身高与体重:女大学生的身高与体重解:解:1、选取身高为自变量、选取身高为自变量x,体重为因变量,体重为因变量y,作散点图:,作散点图:2、由散点图知道身高和体重有比较好的、由散点图知道身高和体重有比较好的线性相关关系,因此可以用线性回归方程线性相关关系,因此可以用线性回归方程刻画它们之间的关系。刻画它们之间的关系。3、从散点图还看到,样本点散布在某一条、从散点图还看到,样本点散布在某一条直线的附近,而不是在一条直线上,所以直线的附近,而不是在一条直线上,所以不能用一次函数不能用一次

11、函数y=bx+a描述它们关系。描述它们关系。我们可以用下面的我们可以用下面的线性回归模型线性回归模型来表示:来表示:y=bx+a+e,其中,其中a和和b为模型的未知参数,为模型的未知参数,e称为随机误差称为随机误差。例例1从某大学中随机选取从某大学中随机选取8名女大学生,其身高和体重数据如表名女大学生,其身高和体重数据如表1-1所示。所示。5943616454505748体重/kg170155165175170157165165身高/cm87654321编号求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm

12、的女大学生的体重。的女大学生的体重。根据最小二乘法估计和就是未知参数a和b的最好估计,ab制表xi2xiyiyixi78合计654321i2iiixyxx ynni=1i=1 ,.例例1从某大学中随机选取从某大学中随机选取8名女大学生,其身高和体重数据如表名女大学生,其身高和体重数据如表1-1所示。所示。5943616454505748体重/kg170155165175170157165165身高/cm87654321编号求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重。的女大学生的体重。

13、根据最小二乘法估计和就是未知参数a和b的最好估计,ab于是有b=12210.849niiiniix ynx yxnx85.712aybx 所以回归方程是0.84985.712yx所以,对于身高为所以,对于身高为172cm的女大学生,由回归方程可以预报其体重为的女大学生,由回归方程可以预报其体重为0.849 7285.71260.316()ykg(,)x y 称为样本点的中心探究探究P4:身高为身高为172cm的女大学生的体重一定是的女大学生的体重一定是60.316kg吗?吗?如果不是,你能解析一下原因吗?如果不是,你能解析一下原因吗?探究探究P4:身高为身高为172cm的女大学生的体重一定是的

14、女大学生的体重一定是60.316kg吗?吗?如果不是,你能解析一下原因吗?如果不是,你能解析一下原因吗?答:身高为答:身高为172cm的女大学生的体重不一定是的女大学生的体重不一定是60.316kg,但一般可以认为她的体重在但一般可以认为她的体重在60.316kg左右。左右。函数模型与回归模型之间的差别函数模型与回归模型之间的差别函数模型:abxy回归模型:eabxy如何描述两个变量之间线性相关关系的强弱?如何描述两个变量之间线性相关关系的强弱?在数学3中,我们学习了用相关系数r来衡量两个变量之间线性相关关系的方法。相关系数相关系数r12211()().()()niiinniiiixxyyxx

15、yy0.751,1,0.75,0 25,0.25,rrr 当,表明两个变量正相关很强;当表明两个变量负相关很强;当.表明两个变量相关性较弱。相关关系的测度相关关系的测度(相关系数取值及其意义)对回归模型进行统计检验对回归模型进行统计检验思考思考P6:如何刻画预报变量(体重)的变化?这个变化在多大程度上如何刻画预报变量(体重)的变化?这个变化在多大程度上与解析变量(身高)有关?在多大程度上与随机误差有关?与解析变量(身高)有关?在多大程度上与随机误差有关?假设身高和随机误差的不同不会对体重产生任何影响,那么所有人的体重将相假设身高和随机误差的不同不会对体重产生任何影响,那么所有人的体重将相同。同

16、。在体重不受任何变量影响的假设下,设在体重不受任何变量影响的假设下,设8名女大学生的体重都是她们的平均值,名女大学生的体重都是她们的平均值,即即8个人的体重都为个人的体重都为54.5kg。54.554.554.554.554.554.554.554.5体重/kg170155165175170157165165身高/cm87654321编号54.5kg在散点图中,所有的点应该落在同一条在散点图中,所有的点应该落在同一条水平直线上,但是观测到的数据并非如水平直线上,但是观测到的数据并非如此。此。这就意味着这就意味着预报变量(体重)的值预报变量(体重)的值受解析变量(身高)或随机误差的影响受解析变量

17、(身高)或随机误差的影响。5943616454505748体重/kg170155165175170157165165身高/cm87654321编号例如,编号为例如,编号为6的女大学生的体重并没有落在水平直线上,她的体重为的女大学生的体重并没有落在水平直线上,她的体重为61kg。解析。解析变量(身高)和随机误差共同把这名学生的体重从变量(身高)和随机误差共同把这名学生的体重从54.5kg“推推”到了到了61kg,相差,相差6.5kg,所以所以6.5kg是解析变量和随机误差的是解析变量和随机误差的组合效应组合效应。编号为编号为3的女大学生的体重并也没有落在水平直线上,她的体重为的女大学生的体重并也

18、没有落在水平直线上,她的体重为50kg。解析。解析变量(身高)和随机误差共同把这名学生的体重从变量(身高)和随机误差共同把这名学生的体重从50kg“推推”到了到了54.5kg,相差,相差-4.5kg,这时解析变量和随机误差的组合效应为这时解析变量和随机误差的组合效应为-4.5kg。用这种方法可以对所有预报变量计算组合效应。用这种方法可以对所有预报变量计算组合效应。数学上,把每个效应(观测值减去总的平均值)的平方加起来,即用数学上,把每个效应(观测值减去总的平均值)的平方加起来,即用21()niiyy表示总的效应,称为表示总的效应,称为总偏差平方和总偏差平方和。在例在例1中,总偏差平方和为中,总

19、偏差平方和为354。5943616454505748体重/kg170155165175170157165165身高/cm87654321编号那么,在这个总的效应(总偏差平方和)中,有多少来自于解析变量(身高)?那么,在这个总的效应(总偏差平方和)中,有多少来自于解析变量(身高)?有多少来自于随机误差?有多少来自于随机误差?假设随机误差对体重没有影响,也就是说,体重仅受身高的影响,那么散点图中所有的点将完全落在回归直线上。但是,在图中,数据点并没有完全落在回归直线上。这些点散布在回归直线附近,所以一定是随机误差把这些点从回归直线上这些点散布在回归直线附近,所以一定是随机误差把这些点从回归直线上“

20、推推”开了开了。在例在例1中,残差平方和约为中,残差平方和约为128.361。因此,数据点和它在回归直线上相应位置的差异是随机误差的效应,因此,数据点和它在回归直线上相应位置的差异是随机误差的效应,称为称为残差残差。)iiyy(iiieyy=例如,编号为例如,编号为6的女大学生,计算随机误差的效应(残差)为:的女大学生,计算随机误差的效应(残差)为:61(0.849 16585.712)6.627对每名女大学生计算这个差异,然后分别将所得的值平方后加起来,用数学符号对每名女大学生计算这个差异,然后分别将所得的值平方后加起来,用数学符号21()niiiyy称为称为残差平方和残差平方和,它代表了随

21、机误差的效应。它代表了随机误差的效应。表示为:表示为:由于解析变量和随机误差的总效应(总偏差平方和)为由于解析变量和随机误差的总效应(总偏差平方和)为354,而随机误差的效应为,而随机误差的效应为128.361,所以解析变量的效应为,所以解析变量的效应为解析变量和随机误差的总效应(总偏差平方和)解析变量和随机误差的总效应(总偏差平方和)=解析变量的效应(回归平方和)解析变量的效应(回归平方和)+随机误差的效应(残差平方和)随机误差的效应(残差平方和)354-128.361=225.639 这个值称为这个值称为回归平方和。回归平方和。我们可以用我们可以用相关指数相关指数R2来刻画回归的效果,其计

22、算公式是来刻画回归的效果,其计算公式是22121()11()niiiniiyyRyy 残差平方和。总偏差平方和2221121()()()nniiiiiniiyyyyRyy总偏差平方和残差平方和回归平方和总偏差平方和总偏差平方和离差平方和的分解离差平方和的分解(三个平方和的意义)1.总偏差平方和总偏差平方和(SST)q反映因变量的反映因变量的n个观察值与其均值的总离差个观察值与其均值的总离差2.回归平方和回归平方和(SSR)q反映自变量反映自变量x的变化对因变量的变化对因变量y取值变化的影响,或取值变化的影响,或者说,是由于者说,是由于x与与y之间的线性关系引起的之间的线性关系引起的y的取值变的

23、取值变化,也称为可解释的平方和化,也称为可解释的平方和3.残差平方和残差平方和(SSE)q反映除反映除x以外的其他因素对以外的其他因素对y取值的影响,也称为不取值的影响,也称为不可解释的平方和或剩余平方和可解释的平方和或剩余平方和样本决定系数样本决定系数(判定系数r2)1.回归平方和占总离差平方和的比例niiniiniiniiyyyyyyyySSTSSRr1212121221我们可以用我们可以用相关指数相关指数R2来刻画回归的效果,其计算公式是来刻画回归的效果,其计算公式是22121()11()niiiniiyyRyy 残差平方和。总偏差平方和显然,显然,R2的值越大,说明残差平方和越小,也就

24、是说模型拟合效果越好。的值越大,说明残差平方和越小,也就是说模型拟合效果越好。在线性回归模型中,在线性回归模型中,R2表示解析变量对预报变量变化的贡献率表示解析变量对预报变量变化的贡献率。R2越接近1,表示回归的效果越好(因为R2越接近1,表示解析变量和预报变量的线性相关性越强)。如果某组数据可能采取几种不同回归方程进行回归分析,则可以通过比较如果某组数据可能采取几种不同回归方程进行回归分析,则可以通过比较R2的值的值来做出选择,即来做出选择,即选取选取R2较大的模型作为这组数据的模型较大的模型作为这组数据的模型。总的来说:总的来说:相关指数相关指数R2是度量模型拟合效果的一种指标。是度量模型

25、拟合效果的一种指标。在线性模型中,它在线性模型中,它代表自变量刻画预报变量的能力代表自变量刻画预报变量的能力。我们可以用我们可以用相关指数相关指数R2来刻画回归的效果,其计算公式是来刻画回归的效果,其计算公式是22121()11()niiiniiyyRyy 残差平方和。总偏差平方和1354总计0.36128.361残差变量0.64225.639随机误差比例平方和来源表表1-3从表从表3-1中可以看出,解析变量对总效应约贡献了中可以看出,解析变量对总效应约贡献了64%,即,即R20.64,可以叙述为,可以叙述为“身高解析了身高解析了64%的体重变化的体重变化”,而随机误差贡献了剩余的,而随机误差

26、贡献了剩余的36%。所以,身高对体重的效应比随机误差的效应大得多。所以,身高对体重的效应比随机误差的效应大得多。表表1-4列出了女大学生身高和体重的原始数据以及相应的残差数据。列出了女大学生身高和体重的原始数据以及相应的残差数据。在研究两个变量间的关系时,首先要根据散点图来粗略判断它们是否线性相关,在研究两个变量间的关系时,首先要根据散点图来粗略判断它们是否线性相关,是否可以用回归模型来拟合数据。是否可以用回归模型来拟合数据。残差分析与残差图的定义:残差分析与残差图的定义:然后,我们可以通过残差来判断模型拟合的效果,判断原始然后,我们可以通过残差来判断模型拟合的效果,判断原始数据中是否存在可疑

27、数据,数据中是否存在可疑数据,这方面的分析工作称为残差分析这方面的分析工作称为残差分析。12,ne ee 编号编号12345678身高身高/cm165165157170175165155170体重体重/kg4857505464614359残差残差-6.3732.6272.419-4.6181.1376.627-2.8830.382我们可以利用图形来分析残差特性,作图时纵坐标为残差,横坐标可以选为样本我们可以利用图形来分析残差特性,作图时纵坐标为残差,横坐标可以选为样本编号,或身高数据,或体重估计值等,这样作出的图形称为编号,或身高数据,或体重估计值等,这样作出的图形称为残差图残差图。残差图的制

28、作及作用。残差图的制作及作用。坐标纵轴为残差变量,横轴可以有不同的选择;坐标纵轴为残差变量,横轴可以有不同的选择;若模型选择的正确,残差图中的点应该分布在以若模型选择的正确,残差图中的点应该分布在以横轴为心的带形区域横轴为心的带形区域;对于远离横轴的点,要特别注意对于远离横轴的点,要特别注意。身高与体重残差图异常点错误数据模型问题几点说明:几点说明:第一个样本点和第第一个样本点和第6个样本点的残差比较大,需要确认在采集过程中是否有人为的个样本点的残差比较大,需要确认在采集过程中是否有人为的错误。如果数据采集有错误,就予以纠正,然后再重新利用线性回归模型拟合数据;错误。如果数据采集有错误,就予以

29、纠正,然后再重新利用线性回归模型拟合数据;如果数据采集没有错误,则需要寻找其他的原因。如果数据采集没有错误,则需要寻找其他的原因。另外,残差点比较均匀地落在水平的带状区域中,说明选用的模型计较合适,这样另外,残差点比较均匀地落在水平的带状区域中,说明选用的模型计较合适,这样的带状区域的宽度越窄,说明模型拟合精度越高,回归方程的预报精度越高。的带状区域的宽度越窄,说明模型拟合精度越高,回归方程的预报精度越高。小结小结用身高预报体重时,需要注意下列问题:用身高预报体重时,需要注意下列问题:1、回归方程只适用于我们所研究的样本的总体;、回归方程只适用于我们所研究的样本的总体;2、我们所建立的回归方程

30、一般都有时间性;、我们所建立的回归方程一般都有时间性;3、样本采集的范围会影响回归方程的适用范围;、样本采集的范围会影响回归方程的适用范围;4、不能期望回归方程得到的预报值就是预报变量的精确值。、不能期望回归方程得到的预报值就是预报变量的精确值。事实上,它是预报变量的可能取值的平均值。事实上,它是预报变量的可能取值的平均值。这些问题也使用于其他问题。这些问题也使用于其他问题。涉及到统计的一些思想:涉及到统计的一些思想:模型适用的总体;模型适用的总体;模型的时间性;模型的时间性;样本的取值范围对模型的影响;样本的取值范围对模型的影响;模型预报结果的正确理解。模型预报结果的正确理解。一般地,建立回

31、归模型的基本步骤为:一般地,建立回归模型的基本步骤为:(1)确定研究对象,明确哪个变量是解析变量,哪个变量是预报变量。)确定研究对象,明确哪个变量是解析变量,哪个变量是预报变量。(2)画出确定好的解析变量和预报变量的散点图,观察它们之间的关系)画出确定好的解析变量和预报变量的散点图,观察它们之间的关系(如是否存在线性关系等)。(如是否存在线性关系等)。(3)由经验确定回归方程的类型(如我们观察到数据呈线性关系,则选用线性)由经验确定回归方程的类型(如我们观察到数据呈线性关系,则选用线性回归方程回归方程y=bx+a).(4)按一定规则估计回归方程中的参数(如最小二乘法)。)按一定规则估计回归方程中的参数(如最小二乘法)。(5)得出结果后分析残差图是否有异常(个别数据对应残差过大,或残差呈现)得出结果后分析残差图是否有异常(个别数据对应残差过大,或残差呈现不随机的规律性,等等),过存在异常,则检查数据是否有误,或模型是不随机的规律性,等等),过存在异常,则检查数据是否有误,或模型是否合适等。否合适等。

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 高中 > 数学 > 人教A版
版权提示 | 免责声明

1,本文(人教A版高中数学选修23课件:回归分析的基本思想及其初步应用.pptx)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|