1、陕西省咸阳中学2022-2023学年高三下学期第六次质量检测理科数学试题学校:_姓名:_班级:_考号:_一、单选题1已知集合,集合,则()ABCD2复数 满足(为虚数单位),则的虚部为()ABCD3某高中有300名学生参加数学竞赛, 其中有三分之一的学生 成绩不低于100分, 将不低于100分的学生成绩制成频率分布直方图(如图),分段区间是,现用分层抽样的方法从这300名学生中随机进行抽取,若成绩在之间的抽取5人,那么应从间抽取的人数为()A1B2C3D44若双曲线 的一条渐近线的倾斜角是另一条渐近线倾斜角的3倍,则该双曲线的离心率为()A2BCD5里氏震级是一种由科学家里克特 (Richte
2、r)和古登堡 (Gutenberg) 在1935年提出的地震震级标度, 其计算公式为,其中是距震源 100 公里处接收到的 0 级地震的地震波的最大振幅,是指这次地震在距震源100公里处接收到的地震波的最大振幅. 震源放出的能量越大,震级就越大,地震释放的能量焦耳. 若地震释放的能量增大为原来的1000倍,则地震波的最大振幅增大为原来的()A10 倍B15 倍C48 倍D100 倍6已知等差数列的前项和是,则 “是等差数列”是 “”的()A充要条件B必要不充分条化C既不充分也不必要条件D充分不必要条化7在计算机的算法语言中有一种函数叫做取整函数 (也称高斯函 数),表示不超过的最大整数. 例如
3、 :. 取整函数在科学和工程上有广泛应用. 下面的程序框图是与取整函数有关的求和问题, 若输入的的值为 64 , 则输出的值是()A21B76C264D6428东汉末年的数学家赵爽在周髀算经中利用一副“弦图”给出了勾股 定理的证明, 后人称其为 “赵爽弦图”. 如图 1 , 它由四个全等的直角三 角形与一个小正方形拼成的一个大正方形. 我们通过类比得到图 2, 它是由三个全等的钝角三角形与一个小等边三角形 拼成的一 个大等边三角形, 若, 则()A5B6C7D89已知,则()ABCD10如图所示,有一个“九宫格”形状的糖果盒子,现有三种不同的糖果(同种糖果不加区分),每种3颗,若把每种糖果都随
4、机地放到其中的三个格子,每个格子只放一颗糖果,那么每一列、每一行的糖果都是三种不同糖果的概率是()ABCD11已知三棱锥的所有顶点都在球的球面上, 二面角的大小为,若球的表面积等于,则三棱锥的体积等于()ABCD12设是定义在上的奇函数,对任意,满足,则的值等于()A2022B2021C4040D4042二、填空题13已知函数,则在处的切线方程为_.14已知,则在方向上的投影为_.15已知拋物线,过焦点的直线与抛物线交于两点,在抛物线的准线上,且满足,则直线的方程为_.16已知函数 的部分图象如图所示,若函数在上的最大值等于1,则的取值范围是_.三、解答题17已知数列的前项和为,给出以下三个条
5、件: ;是等差数列 ;.(1)从三个条件中选取两个,证明另外一个成立;(2)利用(1)中的条件,求数列的前项和.18发展新能源汽车是我国从汽车大国迈向汽车强国的必由之路,是应对气候变化、推动绿色发展的战略举措.随着国务院新能源汽车产业发展规划(20212035)的发布,我国自主品牌汽车越来越具备竞争力.国产某品牌汽车为调研市场,统计了三款燃油汽车和两款新能源汽车在甲、乙两个城市本月的销售情况数据如下.燃油汽车A型车燃油汽车B型车燃油汽车C型车新能源纯电动汽车新能源混合动力汽车城市甲6050403020城市乙2101801107030(1)若在城市甲的销量和在城市乙的销量满足线性相关关系,求出关
6、于的线性回归方程(2)计算是否有的把握认为选择新能源汽车与消费者所在城市有关.附: ., 其中.临界值表:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82819已知直四棱柱中,底面为梯形,分别是上的点,且为上的点.(1)证明:;(2)当时,求平面与平面的夹角的正弦值.20已知椭圆 的离心率为, 过椭圆的焦点且与长轴垂直的弦长为 1 .(1)求椭圆的标准方程;(2)过椭圆的右焦点作直线交椭圆于两点, 交直线于点,若, 求证:为定值.21已知函数.(1)当时,证明函数只有一个零点.(2)若存在,使不等式成立,求的取值范围.22在平面直角坐标系 中,直线的参数方程为(为参数), 以坐标原点为极点,轴的正半轴为极轴建立极坐标系, 曲线的极坐标方程为.(1)求直线的普通方程和曲线的直角坐标方程;(2)设 ,直线与曲线交于两点,求.23已知函数.(1)在坐标系中作出函数的图象;(2)若,求实数的取值范围.试卷第5页,共6页