2019年初三数学中考专题复习课ppt课件-折叠问题(共18张PPT).ppt

上传人(卖家):Q123 文档编号:5380972 上传时间:2023-04-03 格式:PPT 页数:18 大小:1.71MB
下载 相关 举报
2019年初三数学中考专题复习课ppt课件-折叠问题(共18张PPT).ppt_第1页
第1页 / 共18页
2019年初三数学中考专题复习课ppt课件-折叠问题(共18张PPT).ppt_第2页
第2页 / 共18页
2019年初三数学中考专题复习课ppt课件-折叠问题(共18张PPT).ppt_第3页
第3页 / 共18页
2019年初三数学中考专题复习课ppt课件-折叠问题(共18张PPT).ppt_第4页
第4页 / 共18页
2019年初三数学中考专题复习课ppt课件-折叠问题(共18张PPT).ppt_第5页
第5页 / 共18页
点击查看更多>>
资源描述

1、操作操作:如图,将矩形如图,将矩形ABCDABCD沿沿PEPE折叠,使点折叠,使点D D落在边落在边BCBC上的上的F F处,当点处,当点F F在在BCBC边上移动时,折痕两端点也边上移动时,折痕两端点也随之移动,若限定点随之移动,若限定点P,EP,E分别在分别在AD,CDAD,CD边上移动,且边上移动,且AB=3,AD=5AB=3,AD=5,则,则F F点可移动的最大距离为点可移动的最大距离为_探究型问题之“折叠问题”ABDCEPFABDC(E)PF(P)33355412ABCDFE透过现象看本质透过现象看本质:折折叠叠轴轴对对称称实质实质轴对称性质:轴对称性质:ADEF1.图形的全等性:折

2、叠前后的图形是全等形图形的全等性:折叠前后的图形是全等形.2.点的对称性:对称点连线被对称轴(折痕)垂直平分点的对称性:对称点连线被对称轴(折痕)垂直平分.由折叠可得:由折叠可得:1.AFEAFE ADEADE2.AEAE是是DFDF的中垂的中垂线线探究型问题之“折叠问题”例例1:1:已知:在矩形已知:在矩形AOBCAOBC中,中,OB=4,OA=3OB=4,OA=3分别以分别以OB,OAOB,OA所在直所在直线为线为x x轴和轴和y y轴,建立如图所示的平面直角坐标系轴,建立如图所示的平面直角坐标系F F是边是边BCBC上上的一个动点(不与的一个动点(不与B,CB,C重合),过重合),过F

3、F点的反比例函数点的反比例函数 的图象与的图象与ACAC边交于点边交于点E E请探索:是否存在这样的点请探索:是否存在这样的点F F,使得将,使得将CEFCEF沿沿EFEF对折对折后,后,C C点恰好落在点恰好落在OBOB上?上?若存在,求出点若存在,求出点F F的坐标;的坐标;若不存在,请说明理由若不存在,请说明理由(0)kykxNM(4,)4k(,3)3k34k43k)3221,4(F探究型问题之“折叠问题”把条件集中到一把条件集中到一RtRt中,中,根据勾股定理得方程。根据勾股定理得方程。寻找相似三角形,根寻找相似三角形,根据相似比得方程。据相似比得方程。探究型问题之“折叠问题”例例2

4、2:如图如图1 1,在长方形纸片,在长方形纸片ABCDABCD中,中,其中,其中 11,将它沿,将它沿EFEF折叠折叠(点(点E E、F F分别在边分别在边ABAB、CDCD上),使点上),使点B B落在落在ADAD边上的点边上的点M M处,点处,点C C落在点落在点N N处,处,MNMN与与CDCD相交于点相交于点P P,连接,连接EP.EP.设设 ,其中,其中0 0n1n1(1)(1)如图如图2 2,当,当 (即(即M M点与点与D D点重合),点重合),=2=2时,则时,则 =;(2)(2)如图如图3 3,当,当 (即(即M M为为ADAD的中点),的中点),的值发生变化时,求证:的值发

5、生变化时,求证:EP=AE+DPEP=AE+DP;(3)(3)如图如图1 1,当,当 (AB=2ADAB=2AD),),的值发生变化时,的值发生变化时,的值是否发生的值是否发生变化?说明理由变化?说明理由nADAMmBEAE12n 2m nBECFAMmABmAD35延长PM交EA延长线于G,则PDM GAM,EMP EMG.EP=EG=EA+AG=EA+DP.连接BM交EF于Q,过F作FHAB于H,EFBM,ABM=EFH,EFHMBA 的值不发生变化.HGQ1n m21ABHFAMEHAMCFBEAMCFBE 例例3 3:如图,已知直线如图,已知直线l l:y=kx+2y=kx+2,k k

6、0 0,与,与y y轴交于点轴交于点A A,与与x x轴交于点轴交于点B B,以,以OAOA为直径的为直径的PP交交ABAB于另一点于另一点D D,把弧,把弧ADAD沿直线沿直线ABAB翻转后与翻转后与OAOA交于点交于点E E。(1 1)当)当k=k=2 2时,求时,求OEOE的长的长(2 2)是否存在实数)是否存在实数k k,k k0 0,使沿直线,使沿直线ABAB把弧把弧ADAD翻转后翻转后所得的弧与所得的弧与OAOA相切?若存在,请求出此时相切?若存在,请求出此时k k的值,若不存的值,若不存在,请说明理由。在,请说明理由。54OE探究型问题之“折叠问题”1kHO(E)AO(G)(F)

7、B例例4 4:已知扇形已知扇形 AOB 的半径为的半径为 6,圆心角为,圆心角为 90,E 是半径是半径 OA 上一点,上一点,F 是是AB 上一点将扇形上一点将扇形 AOB 沿沿 EF 对折,使得折叠后的图形恰好与半径对折,使得折叠后的图形恰好与半径OB 相切于点相切于点 G 求:点求:点 E 可移动的最大距离是多少?可移动的最大距离是多少?O(G)EFBA()O变式变式1 1:若沿若沿EFEF向上翻折,折叠后向上翻折,折叠后的弧恰好过点的弧恰好过点O O,则,则E E点移动的最大点移动的最大距离是多少距离是多少?3323探究型问题之“折叠问题”OEABFG变式变式2 2:已知扇形已知扇形

8、AOB 的半径为的半径为 6,圆心角为,圆心角为 90,E 是半径是半径 OA 上一点,上一点,F 是是AB 上一点将扇形上一点将扇形 AOB 沿沿 EF 对折,使得折叠后的图形恰好与半径对折,使得折叠后的图形恰好与半径 OB 相切于点相切于点 G若若 OE4,求折痕,求折痕 EF 的长;的长;OGBFEAONM622探究型问题之“折叠问题”OEABFG变式变式3 3:已知扇形已知扇形 AOB 的半径为的半径为 6,圆心角为,圆心角为 90,E 是半径是半径 OA 上一点,上一点,F 是是AB 上一点将扇形上一点将扇形 AOB 沿沿 EF 对折,使得折叠后的图形恰好与半径对折,使得折叠后的图形

9、恰好与半径 OB 相切于点相切于点 G若若 G 是是 OB 中点,求中点,求 OE 和折痕和折痕 EF 的长;的长;探究型问题之“折叠问题”OGBFEAONM415OE变式变式3 3:已知扇形已知扇形 AOB 的半径为的半径为 6,圆心角为,圆心角为 90,E 是半径是半径 OA 上一点,上一点,F 是是AB 上一点将扇形上一点将扇形 AOB 沿沿 EF 对折,使得折叠后的图形恰好与半径对折,使得折叠后的图形恰好与半径 OB 相切于点相切于点 G(3)若)若 G 是是 OB 中点,求中点,求 OE 和折痕和折痕 EF 的长;的长;OGBFEAONMH415OE1123543EF探究型问题之“折

10、叠问题”将边长为将边长为2a2a的正方形的正方形ABCDABCD折叠,使顶点折叠,使顶点C C与与ABAB边上的边上的点点P P重合,折痕交重合,折痕交BCBC于于E E,交,交ADAD于于F F,边边CDCD折叠后与折叠后与ADAD边交于点边交于点H H(1 1)如果)如果P P为为ABAB边的中点,探究边的中点,探究 PBE PBE的三边之比的三边之比.(2 2)如果)如果P P为为ABAB边的中点,还有哪些结论呢边的中点,还有哪些结论呢?(3)(3)若若P P为为ABAB边上任意一点,还能求得边上任意一点,还能求得 PBE PBE的三边的三边之比吗之比吗?(4)(4)若若P P为为ABA

11、B边上任意一点,四边边上任意一点,四边形形PEFQPEFQ的面积为的面积为S,PBS,PB为为x,x,试探究试探究S S与与x x的函数关系的函数关系,关求关求S S的最小值的最小值.探究型问题之“折叠问题”将边长为将边长为2a2a的正方形的正方形ABCDABCD折叠,使顶点折叠,使顶点C C与与ABAB边上的边上的点点P P重合,折痕交重合,折痕交BCBC于于E E,交,交ADAD于于F F,边边CDCD折叠后与折叠后与ADAD边交于点边交于点H H(1 1)如果)如果P P为为ABAB边的中点,探究边的中点,探究 PBE PBE的三边之比的三边之比.xaxa2xa2452,43axaax所

12、以解得可得可得 PBE PBE的三边之比的三边之比3:4:53:4:5.探究型问题之“折叠问题”将边长为将边长为2a2a的正方形的正方形ABCDABCD折叠,使顶点折叠,使顶点C C与与ABAB边上的边上的点点P P重合,折痕交重合,折痕交BCBC于于E E,交,交ADAD于于F F,边边CDCD折叠后与折叠后与ADAD边交于点边交于点H H(2 2)如果如果P P为为ABAB边的中点,还有哪些结论呢边的中点,还有哪些结论呢?aPBEHAPHQF可求出梯形DCEF的面积:aM由CMECBPa45N由FNE CBPa41a253BAEFDCEFSS梯形梯形a探究型问题之“折叠问题”将边长为将边长

13、为2a2a的正方形的正方形ABCDABCD折叠,使顶点折叠,使顶点C C与与ABAB边上的边上的点点P P重合,折痕交重合,折痕交BCBC于于E E,交,交ADAD于于F F,边边CDCD折叠后与折叠后与ADAD边交于点边交于点H H(3)(3)若若P P为为ABAB边上任意一点边上任意一点,还能求得,还能求得 PBEPBE的三边之比吗的三边之比吗?yxya2ya2不能求得三边之比解得.4422axayyayxCBEPEPBAHPHPAyxaBEPAAPH22aCAPH41贯彻从特殊到一般,从一般到特殊的数学思想。贯彻从特殊到一般,从一般到特殊的数学思想。2在在“变变“过程中的过程中的“不变不

14、变”。xa2PBEHAP探究型问题之“折叠问题”将边长为将边长为2a2a的正方形的正方形ABCDABCD折叠,使顶点折叠,使顶点C C与与ABAB边上的边上的点点P P重合,折痕交重合,折痕交BCBC于于E E,交,交ADAD于于F F,边边CDCD折叠后与折叠后与ADAD边交于点边交于点H H(4)(4)若若P P为为ABAB边上任意一点边上任意一点,四边形,四边形PEFQPEFQ的面积为的面积为S,PBS,PB为为x,x,试探究试探究S S与与x x的函数关系的函数关系,关求关求S S的最小值的最小值.yxya2ya2xa2由PBEHAP?由PBEHQF?探究型问题之“折叠问题”解题策略:解题策略:重结果重结果“叠叠”心得:心得:先标等量,再构造方程。先标等量,再构造方程。折叠问题中构造方程的方法:折叠问题中构造方程的方法:(2 2)寻找相似三角形,根据相似比得方程。)寻找相似三角形,根据相似比得方程。(1 1)把条件集中到一)把条件集中到一RtRt中,根据勾股定理得方程。中,根据勾股定理得方程。探究型问题之“折叠问题”重结果重结果折叠问题折叠问题折折叠叠程过重程过重利用利用Rt利用利用相似相似方程思想方程思想轴对称轴对称全等性全等性对称性对称性质本质本精髓精髓探究型问题之“折叠问题”Thanks!

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初中 > 数学 > 中考复习 > 二轮专题
版权提示 | 免责声明

1,本文(2019年初三数学中考专题复习课ppt课件-折叠问题(共18张PPT).ppt)为本站会员(Q123)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|