1、试卷第 1 页,共 5 页 内蒙古巴彦淖尔市杭锦后旗晨丰中学内蒙古巴彦淖尔市杭锦后旗晨丰中学 20242024-20252025 学年上学期九学年上学期九年级年级 9 9 月月考数学试题月月考数学试题 一、单选题一、单选题 1已知关于 x 的一元二次方程222340kxxk的常数项为 0,则 k 的值为()A2 B2 C2 或2 D4 或2 2用配方法解方程21504xx时,变形结果正确的是()A2142x B21722x C2144x D21742x 3若抛物线221yxm的顶点在第一象限,则m的取值范围为()A1m B1m C12m D12m 4某农机厂一月份生产零件 50 万个,第一季度
2、共生产零件 182 万个设该厂二、三月份平均每月的增长率为x,那么x满足的方程是()A250(1)182x B25050(1)50(1)182xx C50(12)182x D25050(1)50(12)182xx 5 抛物线213yx是由抛物线2ya xmk先向左平移 3 个单位长度,再向下平移2 个单位长度得到的,则抛物线2ya xmk的函数解析式为()A245yx B241yx C2yx41 D232yx 6若a是关于x的方程2310 xx 的一个根,则2202462aa的值是()A2026 B2025 C2023 D2022 7在同一坐标系中,一次函数 y=ax+1 与二次函数 y=x2
3、+a 的图象可能是()A B C试卷第 2 页,共 5 页 D 8已知一个二次函数2yaxbxc的自变量 x 与函数 y 的几组对应值如下表,x 4 2 0 3 5 y 24 8 0 3 15 则下列关于这个二次函数的结论正确的是()A图象的开口向上 B当0 x 时,y的值随 x的值增大而增大 C图象经过第二、三、四象限 D图象的对称轴是直线1x 9等腰三角形的一边长是3,另外两边的长是关于x的方程240 xxk的两个根,则k的值为()A3 B4 C3 D3或4 10如图,二次函数214yx 的图象与x轴交于3,0A,B两点,下列结论:点B的坐标为1,0;4AB ;当1x 时,y有最大值是4;
4、0 x 时,y随x的增大而增大;当22x 时,54y,正确的个数为()A2 B3 C4 D5 二、填空题二、填空题 11参加足球联赛的每两个队都进行 2 场比赛,共要比赛 90 场,共有多少个队参加比赛?设参加比赛的有 x个队,根据题意,可列方程为 12关于 x 的方程 2a3 x4x 10有两个不相等的实数根,则 a的取值范围是 13教练对小明推铅球的录像进行技术分析,发现铅球行进高度 y(m)与水平距离 x(m)试卷第 3 页,共 5 页 之间的关系为21(4)312yx,由此可知铅球推出的距离是 m 14若1x,2x是方程231xx的两个根,则1211xx 15 点111,Py,222,
5、Py,335,Py均在二次函数22yxx c的图象上,则1y,2y,3y的大小关系是(从小到大排列)16已知:如图,在平面直角坐标系xOy中,点 A 在抛物线246yxx上运动,过点 A作 ACx 轴于点 C,以 AC 为对角线作正方形 ABCD则正方形的边长 A B 的最小值是 三、解答题三、解答题 17解方程(1)2247xx(2)42163xxx 18已知关于 x 的方程250 xaxa (1)若方程有一个根为 2,求 a的值及该方程的另一个根;(2)求证:不论 a取任何实数,该方程都有两个不相等的实数根 19杂技团进行杂技表演,演员从跷跷板右端 A处弹跳到人梯顶端椅子 B 处,其身体(
6、看成一点)的路线是抛物线23315yxx 的一部分,如图所示 试卷第 4 页,共 5 页 1求演员弹跳离地面的最大高度;2已知人梯高3.4BC 米,在一次表演中,人梯到起跳点 A 的水平距离是 4 米,问这次表演是否成功?请说明理由 20如图,李叔叔想用长为70m的栅栏,再借助房屋的外墙(墙的长度为35m)围成一个矩形羊圈ABCD,并在边BC上留一个2 m宽的门(建在EF处,另用其他材料)(1)当羊圈的长和宽分另为多少米时,能围成一个面积为2640m的羊圈?(2)羊圈的面积能达到2650m吗?如果能,请给出设计方案;如果不能,请说明理由 21某商店销售一批足球纪念册,每本进价 40 元,规定销
7、售单价不低于 44 元,且获利不高于30%试销售期间发现,当销售单价定为 44 元时,每天可售出 300 本,销售单价每上涨1 元,每天销售量减少 10 本,现商店决定涨价销售设销售单价为x元(1)填空:涨价后每本纪念册的利润为_,销售量是_,x的取值范围是_ (2)当每本足球纪念册销售单价是多少元时,商店每天获利 2400 元?22如图,已知抛物线20yaxbxc a经过1,0A,0,3C,3,0B 三点 (1)抛物线的解析式,并求出对称轴和顶点坐标(2)抛物线的对称轴上找一点M,使点M到点A的距离与到点C的距离之和最小,求点M的坐标 试卷第 5 页,共 5 页(3)设点P为抛物线上的一个动点,若PABV的面积是ABCV面积的23,求点P的坐标