高中数学数列通项公式—常见9种求法.docx

上传人(卖家):宝宝乐园 文档编号:3098752 上传时间:2022-07-11 格式:DOCX 页数:12 大小:171.32KB
下载 相关 举报
高中数学数列通项公式—常见9种求法.docx_第1页
第1页 / 共12页
高中数学数列通项公式—常见9种求法.docx_第2页
第2页 / 共12页
高中数学数列通项公式—常见9种求法.docx_第3页
第3页 / 共12页
高中数学数列通项公式—常见9种求法.docx_第4页
第4页 / 共12页
高中数学数列通项公式—常见9种求法.docx_第5页
第5页 / 共12页
点击查看更多>>
资源描述

1、数列通项公式常见9种求法一、公式法例1 已知数列满足,求数列的通项公式。解:两边除以,得,则,故数列是以为首项,以为公差的等差数列,由等差数列的通项公式,得,所以数列的通项公式为。评注:本题解题的关键是把递推关系式转化为,说明数列是等差数列,再直接利用等差数列的通项公式求出,进而求出数列的通项公式。二、累加法例2 已知数列满足,求数列的通项公式。解:由得则QQ群:238455466所以数列的通项公式为。评注:本题解题的关键是把递推关系式转化为,进而求出,即得数列的通项公式。例3 已知数列满足,求数列的通项公式解:由得所以评注:本题解题的关键是把递推关系式转化为,进而求出,即得数列的通项公式。例

2、4 已知数列满足,求数列的通项公式。解:两边除以,得,则,故因此,则评注:本题解题的关键是把递推关系式转化为,进而求出,即得数列的通项公式,最后再求数列的通项公式。三、累乘法例5 已知数列满足,求数列的通项公式。解:因为,所以,则,故所以数列的通项公式为评注:本题解题的关键是把递推关系转化为,进而求出,即得数列的通项公式。例6 已知数列满足,求的通项公式。解:因为所以用式式得则故所以由,则,又知,则,代入得。所以,的通项公式为评注:本题解题的关键是把递推关系式转化为,进而求出,从而可得当的表达式,最后再求出数列的通项公式。四、待定系数法例7 已知数列满足,求数列的通项公式。解:设将代入式,得,

3、等式两边消去,得,两边除以,得代入式得由及式得,则,则数列是以为首项,以2为公比的等比数列,则,故。评注:本题解题的关键是把递推关系式转化为,从而可知数列是等比数列,进而求出数列的通项公式,最后再求出数列的通项公式。例8 已知数列满足,求数列的通项公式。解:设将代入式,得整理得。令,则,代入式得由及式,得,则,故数列是以为首项,以3为公比的等比数列,因此,则。评注:本题解题的关键是把递推关系式转化为,从而可知数列是等比数列,进而求出数列的通项公式,最后再求数列的通项公式。例9 已知数列满足,求数列的通项公式。解:设 将代入式,得,则等式两边消去,得,解方程组,则,代入式,得 由及式,得则,故数

4、列为以为首项,以2为公比的等比数列,因此,则。评注:本题解题的关键是把递推关系式转化为,从而可知数列是等比数列,进而求出数列的通项公式,最后再求出数列的通项公式。五、对数变换法例10 已知数列满足,求数列的通项公式。解:因为,所以。在式两边取常用对数得设11将式代入11式,得,两边消去并整理,得,则,故代入11式,得 12由及12式,得,则,所以数列是以为首项,以5为公比的等比数列,则,因此则。评注:本题解题的关键是通过对数变换把递推关系式转化为,从而可知数列是等比数列,进而求出数列的通项公式,最后再求出数列的通项公式。六、迭代法例11 已知数列满足,求数列的通项公式。解:因为,所以又,所以数

5、列的通项公式为。评注:本题还可综合利用累乘法和对数变换法求数列的通项公式。即先将等式两边取常用对数得,即,再由累乘法可推知,从而。七、数学归纳法例12 已知数列满足,求数列的通项公式。解:由及,得由此可猜测,往下用数学归纳法证明这个结论。(1)当时,所以等式成立。(2)假设当时等式成立,即,则当时,由此可知,当时等式也成立。根据(1),(2)可知,等式对任何都成立。评注:本题解题的关键是通过首项和递推关系式先求出数列的前n项,进而猜出数列的通项公式,最后再用数学归纳法加以证明。八、换元法例13 已知数列满足,求数列的通项公式。解:令,则故,代入得即因为,故则,即,可化为,所以是以为首项,以为公

6、比的等比数列,因此,则,即,得。评注:本题解题的关键是通过将的换元为,使得所给递推关系式转化形式,从而可知数列为等比数列,进而求出数列的通项公式,最后再求出数列的通项公式。九、不动点法例14 已知数列满足,求数列的通项公式。解:令,得,则是函数的两个不动点。因为。所以数列是以为首项,以为公比的等比数列,故,则。评注:本题解题的关键是先求出函数的不动点,即方程的两个根,进而可推出,从而可知数列为等比数列,再求出数列的通项公式,最后求出数列的通项公式。例15 已知数列满足,求数列的通项公式。解:令,得,则是函数的不动点。因为,所以。评注:本题解题的关键是通过将的换元为,使得所给递推关系式转化形式,从而可知数列为等比数列,进而求出数列的通项公式,最后再求出数列的通项公式。

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 高中 > 数学 > 高考专区 > 一轮复习
版权提示 | 免责声明

1,本文(高中数学数列通项公式—常见9种求法.docx)为本站会员(宝宝乐园)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|