浙江省2021届高考数学一轮复习第八章立体几何与空间向量补上一课空间角的大小比较及最值范围问题课件.ppt

上传人(卖家):晟晟文业 文档编号:4218293 上传时间:2022-11-20 格式:PPT 页数:30 大小:3.74MB
下载 相关 举报
浙江省2021届高考数学一轮复习第八章立体几何与空间向量补上一课空间角的大小比较及最值范围问题课件.ppt_第1页
第1页 / 共30页
浙江省2021届高考数学一轮复习第八章立体几何与空间向量补上一课空间角的大小比较及最值范围问题课件.ppt_第2页
第2页 / 共30页
浙江省2021届高考数学一轮复习第八章立体几何与空间向量补上一课空间角的大小比较及最值范围问题课件.ppt_第3页
第3页 / 共30页
浙江省2021届高考数学一轮复习第八章立体几何与空间向量补上一课空间角的大小比较及最值范围问题课件.ppt_第4页
第4页 / 共30页
浙江省2021届高考数学一轮复习第八章立体几何与空间向量补上一课空间角的大小比较及最值范围问题课件.ppt_第5页
第5页 / 共30页
点击查看更多>>
资源描述

1、空间角的大小比较及最值空间角的大小比较及最值(范围范围)问题问题1.空间角的大小比较是每年高考的常考题型,以选择题的形式考查,主要类型有线线角间的大小比较、线面角间的大小比较、面面角间的大小比较及线线角、线面角、面面角间的大小比较,主要方法有计算法、元素比较法、三角函数值比较法及利用最小角定理等方法.2.立体几何动态问题中空间角的最值及范围也是常见到的题型,常与图形转折、点线面等几何元素的变化有关,常用方法有几何法、函数(导数)法,不等式法等.知识拓展题型一空间角的大小比较类型1同类角间的大小比较【例11】(1)(2020嘉兴测试)已知长方体ABCDA1B1C1D1的底面ABCD为正方形,AA

2、1a,ABb,且ab,侧棱CC1上一点E满足CC13CE,设异面直线A1B与AD1,A1B与D1B1,AE与D1B1的所成角分别为,则()A.B.C.D.题型突破(2)如图,作出点D在底面ABC上的射影O,过点O分别作PR,PQ,QR的垂线OE,OF,OG,连接DE,DF,DG,则DEO,DFO,DGO.由图可知它们的对边都是DO,只需比较EO,FO,GO的大小即可.如图,在AB边上取点P,使AP2PB,连接OQ,OR,则O为QRP的中心.答案(1)A(2)B类型2不同类型角间的大小比较【例12】(1)(2019浙江卷)设三棱锥VABC的底面是正三角形,侧棱长均相等,P是棱VA上的点(不含端点

3、).记直线PB与直线AC所成的角为,直线PB与平面ABC所成的角为,二面角PACB的平面角为,则()A.,B.,C.,D.,(2)(一题多解)(2018浙江卷)已知四棱锥SABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点).设SE与BC所成的角为1,SE与平面ABCD所成的角为2,二面角SABC的平面角为3,则()A.123 B.321C.132 D.231解析(1)由题意,不妨设该三棱锥的侧棱长与底面边长相等.因为点P是棱VA上的点(不含端点),所以直线PB与平面ABC所成的角小于直线VB与平面ABC所成的角,而直线VB与平面ABC所成的角小于二面角PACB的平面角,所以.

4、故选B.(2)法一由题意知四棱锥SABCD为正四棱锥,如图,连接AC,BD,记ACBDO,连接SO,则SO平面ABCD,取AB的中点M,连接SM,OM,OE,易得ABSM,则2SEO,3SMO,易知32.再根据最小角定理知31,所以231,故选D.答案(1)B(2)D【训练1】(1)(2020浙江十校联盟适考)已知 三棱柱ABCA1B1C1的所有棱长均相等,侧棱AA1平面ABC.过AB1作平面与BC1平行,设平面与平面ACC1A1的交线为l,记直线l与直线AB,BC,CA所成锐角分别为,则这三个角的大小关系为()A.B.C.D.(2)(2020浙江新高考仿真卷一)已知三棱锥SABC的底面ABC

5、为正三角形,SASBSC,平面SBC,SCA,SAB与平面ABC所成的锐二面角分别为1,2,3,则()A.12 B.12 C.23 D.23(3)(2020浙江三校三联)已知正三棱锥SABC中,G为BC的中点,E为线段BG上的动点(不包括端点),SE与平面ABC所成的角为,二面角SBCA的平面角为,SE与AC所成的角为,则()A.B.C.D.答案(1)B(2)A(3)B题型二空间角的最值【例2】(1)(2020台州期末评估)如图,在矩形ABCD中,AB2,AD1,M为AB的中点,将ADM沿DM翻折,在翻折过程中,当二面角ABCD的平面角最大时,其正切值为()(2)如图所示,在正方体ABCDA1

6、B1C1D1中,点P是棱AB上的动点(P点可以运动到端点A和B),设在运动过程中,平面PDB1与平面ADD1A1所成的最小角为,则cos _.【训练2】(1)已知三棱锥PABC中,点P在底面ABC上的投影正好在等腰直角三角形ABC的斜边AB上(不包含两端点),点P到底面ABC的距离等于等腰直角三角形ABC的斜边AB的长.设平面PAC与底面ABC所成的角为,平面PBC与底面ABC所成的角为,则tan()的最小值为_.(2)如图,四边形ABCD和ADPQ均为正方形,它们所在的平面互相垂直,动点M在线段PQ上,E,F分别为AB,BC的中点.设异面直线EM与AF所成的角为,则cos 的最大值是_.答案(1)C(2)C

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 高中 > 数学 > 高考专区 > 一轮复习
版权提示 | 免责声明

1,本文(浙江省2021届高考数学一轮复习第八章立体几何与空间向量补上一课空间角的大小比较及最值范围问题课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|