1、课题:2.1.2数列的概念与简单表示法(2)高二数学(必修5) 教学案主备人:执教者:【学习目标】1.了解数列的递推公式,明确递推公式与通项公式的异同;2.会根据数列的递推公式写出数列的前几项.【学习重点】根据数列的递推公式写出数列的前几项.【学习难点】理解递推公式与通项公式的关系.【授课类型】新授课【教 具】多媒体电脑、实物投影仪、电子白板【学习方法】诱思探究法【学习过程】一、复习引入:师 同学们,昨天我们学习了数列的定义,数列的通项公式的意义等内容,哪位同学能谈一谈什么叫数列的通项公式?生 如果数列an的第n项与序号之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式.师
2、你能举例说明吗?生 如数列0,1,2,3,的通项公式为an=n-1(nN*);1,1,1的通项公式为an=1(nN*,1n3);1, , , ,的通项公式为an= (nN*).合作探究数列的表示方法师 通项公式是表示数列的很好的方法,同学们想一想还有哪些方法可以表示数列?生 图象法,我们可仿照函数图象的画法画数列的图形.具体方法是以项数n为横坐标,相应的项an为纵坐标,即以(n,an)为坐标在平面直角坐标系中作出点(以前面提到的数列1, ,为例,作出一个数列的图象),所得的数列的图形是一群孤立的点,因为横坐标为正整数,所以这些点都在y轴的右侧,而点的个数取决于数列的项数.从图象中可以直观地看到
3、数列的项随项数由小到大变化而变化的趋势.师 说得很好,还有其他的方法吗?生 师 下面我们来介绍数列的另一种表示方法:递推公式法知识都来源于实践,同时还要应用于生活,用其来解决一些实际问题.下面同学们来看右下图:钢管堆放示意图(投影片).观察钢管堆放示意图,寻其规律,看看能否建立它的一些数学模型. 生 模型一:自上而下第1层钢管数为4,即141+3;第2层钢管数为5,即252+3;第3层钢管数为6,即363+3;第4层钢管数为7,即474+3;第5层钢管数为8,即585+3;第6层钢管数为9,即696+3;第7层钢管数为10,即7107+3.若用an表示钢管数,n表示层数,则可得出每一层的钢管数
4、为一数列,且an=n+3(1n7). 师 同学们运用每一层的钢管数与其层数之间的对应规律建立了数列模型,这完全正确,运用这一关系,会很快捷地求出每一层的钢管数.这会给我们的统计与计算带来很多方便.让同学们继续看此图片,是否还有其他规律可循?(启发学生寻找规律)生 模型二:上下层之间的关系自上而下每一层的钢管数都比上一层钢管数多1,即a1=4;a2=5=4+1=a1+1;a3=6=5+1=a2+1.依此类推:an=a n-1+1(2n7).师对于上述所求关系,同学们有什么样的理解?生 若知其第1项,就可以求出第二项,以此类推,即可求出其他项.师 看来,这一关系也较为重要,我们把数列中具有这种递推
5、关系的式子叫做递推公式.二、新课学习:1.递推公式定义:如果已知数列an的第1项(或前几项),且任一项an与它的前一项an-1(或前n项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.注意:递推公式也是给出数列的一种方法.如下列数字排列的一个数列:3,5,8,13,21,34,55,89.递推公式为:a1=3,a2=5,an=an-1+a n-2(3n8).2.数列可看作特殊的函数,其表示也应与函数的表示法有联系,函数的表示法有:列表法、图象法、解析式法.相对于数列来说也有相应的这几种表示方法:即列表法、图象法、解析式法.三、 特例示范【例1】 设数列an满足.写出这个数
6、列的前五项.师 分析:题中已给出an的第1项即a1=1,题目要求写出这个数列的前五项,因而只要再求出二到五项即可.这个递推公式:an=1+我们将如何应用呢?生 这要将n的值2和a1=1代入这个递推公式计算就可求出第二项,然后依次这样进行就可以了.师 掌握递推公式很关键的一点就是其中的递推关系,同学们要注意探究和发现递推公式中的前项与后项,或前后几项之间的关系.【例2】 已知a1=2,an+1=2an,写出前5项,并猜想an.师 由例1的经验我们先求前5项.生 前5项分别为2,4,8,16,32.师 对,下面来猜想第n项.生 由a1=2,a2=22=22,a3=222=23观察可得,我猜想an=
7、2n.教师精讲(1)数列的递推公式是由初始值和相邻几项的递推关系确定的,如果只有递推关系而无初始值,那么这个数列是不能确定的.例如,由数列an中的递推公式an+1=2an+1无法写出数列an中的任何一项,若又知a1=1,则可以依次地写出a2=3,a3=7,a4=15,.(2)递推公式是给出数列的一种方法,由递推公式可能求出数列的通项公式,也可能求不出通项公式.四、当堂练习: 学案2.1.2五、 本节小结:通项公式反映的是项与项数之间的关系,而递推公式反映的是相邻两项(或n项)之间的关系.对于通项公式,只要将公式中的n依次取1,2,3,即可得到相应的项.而递推公式则要已知首项(或前n项),才可求
8、得其他的项.六、作业布置:课时作业3.1.2个性设计课后反思:高一数学测试题一 选择题:本大题共l0小题,每小题5分,满分50分在每小题给出的四个选项中只有一项是符合题目要求的1设集合x0,B=x|-1x3,则AB=( )A-1,0 B-3,3 C0,3 D-3,-12.下列图像表示函数图像的是( )A B C D3. 函数的定义域为( )A(5,) B5,C(5,0) D (2,0)4. 已知,则的大小关系是( )A B C D 5.函数的实数解落在的区间是( ) 6.已知则线段的垂直平分线的方程是( ) 7. 下列条件中,能判断两个平面平行的是( )A 一个平面内的一条直线平行于另一个平面
9、;B 一个平面内的两条直线平行于另一个平面C 一个平面内有无数条直线平行于另一个平面D 一个平面内任何一条直线都平行于另一个平面 8. 如图,在RtABC中,ABC=90,P为ABC所在平面外一点PA平面ABC,则四面体P-ABC中共有( )个直角三角形。 A 4 B 3 C 2 D 19.如果轴截面为正方形的圆柱的侧面积是,那么圆柱的体积等于() A B C D 10 .在圆上,与直线的距离最小的点的坐标为( ) 二 填空题本大题共4小题,每小题5分,满分20分11.设,则的中点到点的距离为 .12. 如果一个几何体的三视图如右图所示(单位长度:cm), 则此几何体的表面积是 .13.设函数
10、在R上是减函数,则的范围是 .14.已知点到直线距离为,则= .三、解答题:本大题共6小题,满分80分解答须写出文字说明、证明过程和演算步骤15. (本小题满分10分)求经过两条直线和的交点,并且与直线垂直的直线方程(一般式).16. (本小题满分14分)如图,的中点.(1)求证:;(2)求证:; 17. (本小题满分14分)已知函数(14分)(1)求的定义域;(2)判断的奇偶性并证明;18. (本小题满分14分)当,函数为,经过(2,6),当时为,且过(-2,-2),(1)求的解析式;(2)求;(3)作出的图像,标出零点。19. (本小题满分14分)已知圆:,(1)求过点的圆的切线方程;(2
11、)点为圆上任意一点,求的最值。20.(本小题满分14分)某商店经营的消费品进价每件14元,月销售量Q(百件)与销售价格P(元)的关系如下图,每月各种开支2000元,(1) 写出月销售量Q(百件)与销售价格P(元)的函数关系。(2) 该店为了保证职工最低生活费开支3600元,问:商品价格应控制在什么范围?(3) 当商品价格每件为多少元时,月利润并扣除职工最低生活费的余额最大?并求出最大值。答案一选择(每题5分) 1-5 A C A C B 6-10 B D A B C二填空(每题5分) 11. 12. 13. 14. 1或-3三解答题15.(10分) 16.(14分) (1)取1分 为中点, (
12、2)17.(14分)(1)由对数定义有 0,(2分)则有(2)对定义域内的任何一个,1分都有, 则为奇函数4分18.14分(1).6分(2) 3分(3)图略3分. 零点0,-12分19.14分(1)设圆心C,由已知C(2,3) , 1分AC所在直线斜率为, 2分则切线斜率为,1分则切线方程为。 2分(2)可以看成是原点O(0,0)与连线的斜率,则过原点与圆相切的直线的斜率为所求。1分圆心(2,3),半径1,设=k,1分则直线为圆的切线,有,2分解得,2分 所以的最大值为,最小值为 2分20.14分(1) 4分(2)当时,1分即,解得,故; 2分当时, 1分即,解得,故。2分所以(4) 每件19.5元时,余额最大,为450元。4分10