1、?的交点坐标有什么关系轴与的根与函数:方程问题xxyx1011xy013211212341 xy交点坐标。请写出轴是否有交点。若有,函数图像与像的草图。并判断画出相应的二次函数图方程的根,并:求出表中的一元二次问题x2方程方程函数函数函函数数的的图图像像方程的实数根方程的实数根x1=1,x2=3x1=x2=1无实数根无实数根(1,0)、(3,0)(1,0)无交点无交点xy01321121234.xy0132112543.yx012112x22x+1=0 x22x+3=0y=x22x3 y=x22x+1x22x3=0y=x22x+3系?思考:二者之间有何联会有什么结论?与相应的二次函数程的一元二
2、次方:上述结论推广至一般问题cbxaxyacbxax22)0(03有两个不等的有两个不等的实数根实数根x1,x2 有两个相等实有两个相等实数根数根x1=x2没有实数根没有实数根xyx1x2xyx1=x2xy一般地一般地,一元二次方程一元二次方程axax2 2+bx+c=0(a0+bx+c=0(a0)的根与二)的根与二次函数次函数 y=axy=ax2 2+bx+c(a0+bx+c(a0)的图像有如下关系:)的图像有如下关系:(x1,0),(x2,0)(x1,0)没有交点没有交点又会有什么结论?与相应的函数般方程:将上述结论推广至一问题)(0)(4xfyxf方程的实数根就是对应函数图像与方程的实数
3、根就是对应函数图像与x轴交点的横坐标。轴交点的横坐标。结论结论1、函数零点的定义对于函数 ,我们把使 的实实数数x 叫做函数 的零点零点。)(xfy 0)(xf)(xfy 方程f(x)=0有实数根函数y=f(x)的图像与x轴有交点函数y=f(x)有零点2、结论有几个零点?像,说一说的图函数图像寻找零点呢?观察的零点,如何根据:方程的实数根即函数问题)()(5xfyRxxfyxy0abab问题6:如果将定义域改为区间a,b观察图像说一说零点个数的情况,有什么发现?abxy00)()(bfaf结论结论是否一定有零点?端点函数值上函数:如果闭区间问题0)()()(,7bfafxfybaababxy0
4、 函数函数 的图像在闭区间的图像在闭区间a,b上连续不断。上连续不断。)(xfy 结论结论问题8:满足上述两个条件,能否确定零点个数呢?ab0yxabxy0 有零点,至少有一个,但不确定个数,即存在零点。有零点,至少有一个,但不确定个数,即存在零点。结论结论结论结论不断的一条曲线,上的图像是连续在区间如果函数,)(baxfy 内有零点,间在区那么,函数并且有),()(,0)()(baxfybfaf的根。也就是方程这个使得即存在0)(,0)(),(xfccfbac的零点个数。:求函数问题62ln)(9xxxfx0246105y241086121487643219表表3-1 x 1 2 3 4 5
5、 6 7 8 9f(x)-4-1.3069 1.0986 3.3863 5.6094 7.7918 9.9459 12.0794 14.1972 解:用计算器或计算机作出解:用计算器或计算机作出 的对应值表(表的对应值表(表3-1)和图像。)和图像。)(xfx、问题10:为什么上个问题中只有一个零点呢?说一说理由?。)是增函数,请证明它,在(函数0)(xf练习:88页第一题问题11:请同学们思考、交流一下,这节课学习到了什么?1、知识小结:一个定义,四个结论。2、思想方法:数形结合、转化思想。作业:作业:1、必做题:P88 练习第二题2、选做题:(1)在区间(0,3)范围内恰有一个零点,则a的取值范围是多少?32)(2xaxxf的实数解的个数的方程,讨论关于已知axxxRa86)2(2