1、tt6,6则解:令)sin21(2cos)2cos()232cos(2ttt31sin t97)232cos(0cossin3)cos()2cos(3解:31tan5691034tan1tan1cossin2sin21cos2sin21cos22222一12sin3)2cos1(1cossin32sin2)(2xxxxxxf解:)62sin(22cos2sin3xxx323mn根据图像:D答案为一xxxxxxf2sin22sin22sin2)22cos(12)22cos(1)(解:)22sin()(2sin)(axaxxg平移后函数解析式:)(2Zkka02sinaB答案为1)4sin(2)(
2、xxf解:单调递增在单调递减,在,0)4sin(,0)(axaxf43a24aC答案为一21)6sin(2cos1sin232cos2cos2sin3)(2xxxxxxxf解:kxkxf22622)(的单调递增时,D答案为Z),23,232()(kkkxf的单调增区间为:一33a解:)32sin(23)2cos1(32sin)(xxxxf 1,21()(xf)67,3(32),43,3(xx当xyxysin2sin2倍:伸长为原来的解:法一、将纵坐标)4sin(2sin24xyxy个单位:向右平移)421sin(2)4sin(22xyxy倍:的将横坐标伸长为原来xyxysin2sin2倍:伸长为原来的解:法二、将纵坐标)4sin(2)21sin(24xyxy个单位:向右平移)21sin(2sin22xyxy倍:的将横坐标伸长为原来一2)32(6解:A4个单位,选将点向左平移一)622sin()6)(2sin()62sin(xxyxy解:)622sin()62cos(xx又4,22一33A,得解:由最大值为2,)6(65wT又)2sin(3xyk232,0)32sin()0,3(代入,得:将3,2,23又k)32sin(3xy