最新人教版高中数学必修5讲义及配套习题(全册-共293页-附解析)(DOC 363页).docx

上传人(卖家):2023DOC 文档编号:5902101 上传时间:2023-05-14 格式:DOCX 页数:362 大小:5.81MB
下载 相关 举报
最新人教版高中数学必修5讲义及配套习题(全册-共293页-附解析)(DOC 363页).docx_第1页
第1页 / 共362页
最新人教版高中数学必修5讲义及配套习题(全册-共293页-附解析)(DOC 363页).docx_第2页
第2页 / 共362页
最新人教版高中数学必修5讲义及配套习题(全册-共293页-附解析)(DOC 363页).docx_第3页
第3页 / 共362页
最新人教版高中数学必修5讲义及配套习题(全册-共293页-附解析)(DOC 363页).docx_第4页
第4页 / 共362页
最新人教版高中数学必修5讲义及配套习题(全册-共293页-附解析)(DOC 363页).docx_第5页
第5页 / 共362页
点击查看更多>>
资源描述

1、最新人教版高中数学必修5讲义及配套习题(全册 共294页 附解析)目录第一章 解三角形1.1 正弦定理和余弦定理1.2 应用举例第二章 数列2.1 数列的概念与简单表示法2.2 等差数列2.3 等差数列的前N项和2.4 等比数列2.5 等比数列的前N项和第三章 不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3二元一次不等式(组)与简单的线性规划问题3.4 3.5 绝对值不等式模块复习精要 复习课(一)解三角形模块复习精要 复习课(二)数列模块复习精要 复习课(三)不等式模块复习精要 模块综合检测第 362 页 共 362 页/11.1正弦定理预习课本P23,思考并完成以下问题

2、 (1)直角三角形中的边角之间有什么关系?(2)正弦定理的内容是什么?利用它可以解哪两类三角形?(3)解三角形的含义是什么?1正弦定理在一个三角形中,各边和它所对角的正弦的比相等,即.点睛正弦定理的特点(1)适用范围:正弦定理对任意的三角形都成立(2)结构形式:分子为三角形的边长,分母为相应边所对角的正弦的连等式(3)刻画规律:正弦定理刻画了三角形中边与角的一种数量关系,可以实现三角形中边角关系的互化2解三角形一般地,把三角形的三个角A,B,C和它们的对边a,b,c叫做三角形的元素,已知三角形的几个元素求其他元素的过程叫做解三角形1判断下列命题是否正确(正确的打“”,错误的打“”)(1)正弦定

3、理适用于任意三角形()(2)在ABC中,等式bsin Aasin B总能成立()(3)在ABC中,已知a,b,A,则此三角形有唯一解()解析:(1)正确正弦定理适用于任意三角形(2)正确由正弦定理知,即bsin Aasin B.(3)错误在ABC中,已知a,b,A,此三角形的解有可能是无解、一解、两解的情况,具体情况由a,b,A的值来定答案:(1)(2)(3)2在ABC中,下列式子与的值相等的是()A.B.C. D.解析:选C由正弦定理得,所以.3在ABC中,已知A30,B60,a10,则b等于()A5 B10C. D5解析:选B由正弦定理得,b10.4在ABC中,A,b2,以下错误的是()A

4、若a1,则c有一解B若a,则c有两解C若a,则c无解 D若a3,则c有两解解析:选Da2 sin1时,c有一解;当a1时,c无解;当1a2时,c有一解故选D.已知两角及一边解三角形典例在ABC中,已知a8,B60,C75,求A,b,c.解A180(BC)180(6075)45,由正弦定理,得b4,由,得c4(1)已知三角形任意两角和一边解三角形的基本思路(1)由三角形的内角和定理求出第三个角(2)由正弦定理公式的变形,求另外的两条边注意若已知角不是特殊角时,往往先求出其正弦值(这时应注意角的拆并,即将非特殊角转化为特殊角的和或差,如754530),再根据上述思路求解 活学活用在ABC中,若A6

5、0,B45,BC3,则AC()A4B2C. D.解析:选B由正弦定理得,即,所以AC2,故选B.已知两边及其中一边的对角解三角形典例在ABC中,a,b,B45,求A,C,c.解由正弦定理及已知条件,有,得sin A.ab,AB45.A60或120.当A60时,C180456075,c;当A120时,C1804512015,c.综上可知:A60,C75,c或A120,C15,c.已知三角形两边和其中一边的对角解三角形的方法(1)首先由正弦定理求出另一边对角的正弦值(2)如果已知的角为大边所对的角时,由三角形中大边对大角、大角对大边的法则能判断另一边所对的角为锐角,由正弦值可求锐角唯一(3)如果已

6、知的角为小边所对的角时,则不能判断另一边所对的角为锐角,这时由正弦值可求两个角,要分类讨论 活学活用在ABC中,c,C60,a2,求A,B,b.解:,sin A.A45或A135.又ca,CA.A45.B75,b1.三角形形状的判断典例在ABC中,acosbcos,判断ABC的形状解:法一化角为边acosbcos,asin Absin B由正弦定理可得:ab,a2b2,ab,ABC为等腰三角形法二化边为角acosbcos,asin Absin B.由正弦定理可得:2Rsin2A2Rsin2B,即sin Asin B,AB.(AB不合题意舍去)故ABC为等腰三角形利用正弦定理判断三角形的形状的两

7、条途径(1)化角为边将题目中的所有条件,利用正弦定理化角为边,再根据多项式的有关知识(分解因式、配方等)得到边的关系,如ab,a2b2c2等,进而确定三角形的形状利用的公式为:sin A,sin B,sin C.(2)化边为角将题目中所有的条件,利用正弦定理化边为角,再根据三角函数的有关知识得到三个内角的关系,进而确定三角形的形状利用的公式为:a2Rsin A,b2Rsin B,c2Rsin C活学活用在ABC中,已知acos Abcos B,试判断ABC的形状解:由正弦定理,2R,所以acos Abcos B可化为sin A cos Asin Bcos B,sin 2Asin 2B,又ABC

8、中,A,B,C(0,),所以2A2B或2A2B,即AB或AB,所以ABC的形状为等腰或直角三角形层级一学业水平达标1在ABC中,a5,b3,则sin Asin B的值是()A. B.C. D.解析:选A根据正弦定理得.2在ABC中,absin A,则ABC一定是()A锐角三角形 B直角三角形C钝角三角形 D等腰三角形解析:选B由题意有b,则sin B1,即角B为直角,故ABC是直角三角形3在ABC中,若,则C的值为()A30 B45C60 D90解析:选B由正弦定理得,则cos Csin C,即C45,故选B.4ABC中,A,B,b,则a等于()A1 B2C. D2解析:选A由正弦定理得,a1

9、,故选A.5在ABC中,角A,B,C所对的边分别是a,b,c,且absin A,则sin B()A. B.C. D解析:选B由正弦定理得a2Rsin A,b2Rsin B,所以sin Asin Bsin A,故sin B.6下列条件判断三角形解的情况,正确的是_(填序号)a8,b16,A30,有两解;b18,c20,B60,有一解;a15,b2,A90,无解;a40,b30,A120,有一解解析:中absin A,有一解;中csin Bbb,有一解;中ab且A120,有一解综上,正确答案:7在ABC中,若(sin Asin B)(sin Asin B)sin2C,则ABC的形状是_解析:由已知

10、得sin2Asin2Bsin2C,根据正弦定理知sin A,sin B,sin C,所以222,即a2b2c2,故b2c2a2.所以ABC是直角三角形答案:直角三角形8在锐角ABC中,BC1,B2A,则_.解析:由正弦定理及已知得,2.答案:29已知一个三角形的两个内角分别是45,60,它们所夹边的长是1,求最小边长解:设ABC中,A45,B60,则C180(AB)75.因为CBA,所以最小边为a.又因为c1,由正弦定理得,a1,所以最小边长为1.10在ABC中,已知a2,A30,B45,解三角形解:,b4.C180(AB)180(3045)105,c4sin(3045)22.层级二应试能力达

11、标1在ABC中,角A,B,C所对的边分别为a,b,c,如果ca,B30,那么角C等于()A120B105C90 D75解析:选Aca,sin Csin Asin(18030C)sin(30C),即sin Ccos C,tan C.又0C180,C120.故选A.2已知a,b,c分别是ABC的内角A,B,C的对边,若ABC的周长为4(1),且sin Bsin Csin A,则a()A. B2C4 D2解析:选C根据正弦定理,sin Bsin Csin A可化为bca,ABC的周长为4(1),解得a4.故选C.3在ABC中,A60,a,则等于()A. B.C. D2解析:选B由a2Rsin A,b

12、2Rsin B,c2Rsin C得2R.4在ABC中,若ABC,且AC2B,最大边为最小边的2倍,则三个角ABC()A123 B234C345 D456解析:选A由ABC,且AC2B,ABC,可得B,又最大边为最小边的2倍,所以c2a,所以sin C2sin A,即sin2sin Atan A,又0A0,sin Bcos B10,即sin ,B(0,),B.(2)由(1)得:2R2,ac2R(sin Asin C)2sin.C,2sin(,2,ac的取值范围为(,211.2余弦定理预习课本P56,思考并完成以下问题 (1)余弦定理的内容是什么?(2)已知三角形的两边及其夹角如何解三角形?(3)

13、已知三角形的三边如何解三角形?余弦定理余弦定理公式表达a2b2c22bccos A,b2a2c22accos_B,c2a2b22abcos_C余弦定理语言叙述三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍推论cos Ac os B,cos C点睛余弦定理的特点(1)适用范围:余弦定理对任意的三角形都成立(2)揭示的规律:余弦定理指的是三角形中三条边与其中一个角的余弦之间的关系,它含有四个不同的量,知道其中的三个量,就可求得第四个量1判断下列命题是否正确(正确的打“”,错误的打“”)(1)余弦定理揭示了任意三角形边角之间的关系,因此,它适应于任何三角形()(2

14、)在ABC中,若a2b2c2,则ABC一定为钝角三角形()(3)在ABC中,已知两边和其夹角时,ABC不唯一()解析:(1)正确余弦定理反映了任意三角形的边角关系,它适合于任何三角形(2)正确当a2b2c2时,cos A0.因为0Ab知AB,B30.故C180AB1804530105.(1)已知三边求角的基本思路是:利用余弦定理的推论求出相应角的余弦值,值为正,角为锐角;值为负,角为钝角,其思路清晰,结果唯一(2)若已知三角形的三边的关系或比例关系,常根据边的关系直接代入化简或利用比例性质,转化为已知三边求解活学活用已知a,b,c是ABC三边之长,若满足等式(abc)(abc)ab,则C的大小

15、为()A60B90C120 D150解析:选C(abc)(abc)ab,c2a2b2ab,由余弦定理可得,cos C,0C180,C120,故选C.利用余弦定理判断三角形形状典例在ABC中,若b2sin2Cc2sin2B2bccos Bcos C,试判断ABC的形状解:法一化角为边将已知等式变形为b2(1cos2C)c2(1cos2B)2bccos Bcos C.由余弦定理并整理,得b2c2b22c222bc,b2c2a2.A90.ABC是直角三角形法二化边为角由正弦定理,已知条件可化为sin2Csin2Bsin2Csin2B2sin Bsin Ccos Bcos C.又sin Bsin C0

16、,sin Bsin Ccos Bcos C,即cos(BC)0.又0BC0,则ABC()A一定是锐角三角形 B一定是直角三角形C一定是钝角三角形 D是锐角或直角三角形解析:选C由0得cos C0,所以cos Ccb,A为最大角由余弦定理的推论,得cos A.又0Ab Ba0,a2b2,ab.3在ABC中,cos2,则ABC是()A正三角形B直角三角形C等腰三角形或直角三角形D等腰直角三角形解析:选Bcos2,cos B,a2c2b22a2,即a2b2c2,ABC为直角三角形4在ABC中,内角A,B,C的对边分别为a,b,c.若b2c2bca20,则()A. B.C D解析:选A由余弦定理得co

17、s A,又b2c2bca20,则cos A,又0A60,ADC120,C1801203030,B60.(2)设DCx,则BD2x,BC3x,ACx,sin B,cos B,ABx,在ABD中,AD2AB2BD22ABBDcos B,即(2)26x24x22x2x2x2,得x2.故DC2.第一课时解三角形的实际应用举例预习课本P1116,思考并完成以下问题 (1)方向角和方位角各是什么样的角?(2)怎样测量物体的高度?(3)怎样测量物体所在的角度? 实际测量中的有关名称、术语名称定义图示仰角在同一铅垂平面内,视线在水平线上方时l与水平线的夹角俯角在同一铅垂平面内,视线在水平线l下方时与水平线的夹

18、角方向角从指定方向线到目标方向线的水平角(指定方向线是指正北或正南或正东或正西,方向角小于90)方位角从正北的方向线按顺时针到目标方向线所转过的水平角1判断下列命题是否正确(正确的打“”,错误的打“”)(1)已知三角形的三个角,能够求其三条边()(2)两个不可到达的点之间的距离无法求得()(3)方位角和方向角是一样的()解析:(1)错误,要解三角形,至少知道这个三角形的一条边长(2)错误,两个不可到达的点之间的距离我们可以借助第三个点和第四个点量出角度、距离求得(3)错误方位角是指从正北方向顺时针转到目标方向线的水平角,而方向角是以观测者的位置为中心,将正北或正南方向作起始方向旋转到目标的方向

19、线所成的角(一般指锐角)答案:(1)(2)(3)2若点A在点C的北偏东30,点B在点C的南偏东60,且ACBC,则点A在点B的()A北偏东15B北偏西15C北偏东10 D北偏西10解析:选B如图所示,ACB90,又ACBC,CBA45,而30,90453015.点A在点B的北偏西15.故选B.3从A处望B处的仰角为,从B处望A处的俯角为,则,的关系为()A BC90 D180解析:选B根据题意和仰角、俯角的概念画出草图,如图知,故应选B.4.已知船A在灯塔C北偏东85且到C的距离为1 km,船B在灯塔C西偏北25且到C的距离为 km,则A,B两船的距离为_km.解析:由题意得ACB(9025)

20、85150,又AC1,BC,由余弦定理得AB2AC2BC22ACBCcos 1507,AB.答案:测量高度问题典例如图,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两点C与D.现测得BCD,BDC,CDs,并在点C测得塔顶A的仰角为,求塔高AB.解在BCD中,CBD()由正弦定理得.BC.在RtABC中,ABBCtanACB.测量高度问题的解题策略(1)“空间”向“平面”的转化:测量高度问题往往是空间中的问题,因此先要选好所求线段所在的平面,将空间问题转化为平面问题(2)“解直角三角形”与“解斜三角形”结合,全面分析所有三角形,仔细规划解题思路活学活用1一个大型喷水池的中央有一个强力

21、喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的A处测得水柱顶端的仰角为45,沿A向北偏东30方向前进100 m到达B处,在B处测得水柱顶端的仰角为30,则水柱的高度是()A50 mB100 mC120 m D150 m解析:选A如图,设水柱高度是h m,水柱底端为C,则在ABC中,A60,ACh,AB100,BCh,根据余弦定理得,(h)2h210022h100cos 60,即h250h5 0000,解得h50或h100(舍去),故水柱的高度是50 m.2.如图所示,在山底A处测得山顶B的仰角CAB45,沿倾斜角为30的山坡向山顶走1 000 m到达S点,又测得山顶仰角DSB7

22、5,则山高BC为_m.解析:因为SAB453015,SBAABCSBC45(9075)30,所以ASB180SABSBA135.在ABS中,AB1 000,所以BCABsin 451 0001 000(m)答案:1 000测量角度问题典例如图所示,A,B是海面上位于东西方向相距5(3) n mile的两个观测点现位于A点北偏东45方向、B点北偏西60方向的D点有一艘轮船发出求救信号,位于B点南偏西60且与B点相距20 n mile的C点的救援船立即前往营救,其航行速度为30 n mile/h,则该救援船到达D点需要多长时间?解由题意,知AB5(3) n mile,DBA906030,DAB90

23、4545,ADB180(4530)105.在DAB中,由正弦定理得,即BD10 n mile.又DBCDBAABC60,BC20 n mile,在DBC中,由余弦定理,得CD 30 n mile,则救援船到达D点需要的时间为1 h.测量角度问题主要是指在海上或空中测量角度的问题,如确定目标的方位,观察某一建筑物的视角等解决它们的关键是根据题意和图形及有关概念,确定所求的角在哪个三角形中,该三角形中已知哪些量,需要求哪些量通常是根据题意,从实际问题中抽象出一个或几个三角形,然后通过解这些三角形,得到所求的量,从而得到实际问题的解活学活用在海岸A处,发现北偏东45方向,距离A处(1)n mile的B处有一艘走私船,在A处北偏西75的方向,距离A 2 n mile的C处的缉私船奉命以10 n mile的速度追截走私船此时,走私船正以10 n mile/h的速度从B处向北偏东30方向逃窜,问缉私船沿什么方向能

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 高中 > 数学 > 其他版本
版权提示 | 免责声明

1,本文(最新人教版高中数学必修5讲义及配套习题(全册-共293页-附解析)(DOC 363页).docx)为本站会员(2023DOC)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|